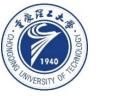


Chongqing University of Technology ATA Advanced Technique of Artificial Intelligence

Diverse and Informative Dialogue Generation with Context-Specific Commonsense Knowledge Awareness

Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou and Zhonghai Wu

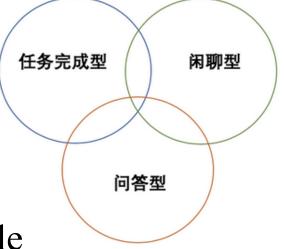
Speaker: ZhangLiang 2021.02.21



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5811–5820 July 5 - 10, 2020. c ?2020 Association for Computational Linguistics

Introduction

- Open-domain dialogue response generation systems still suffer from generating generic and boring responses, such as "I don't know."
- Researchers have begun to introduce large-scale knowledge graphs for enhancing the dialogue generation

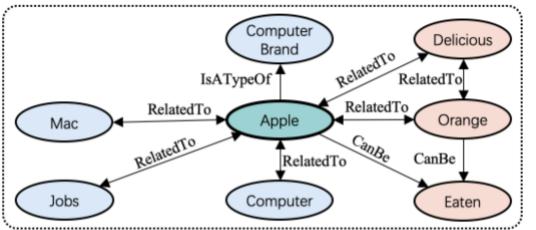


Introduction

Some challenges in knowledge-aware dialogue generation still keep unsolved.

- 1) An entity word usually can refer to different concepts, i.e., an entity has multiple meanings, but only one specific concept is involved in a particular context.
- 2) Even if we only consider a particular entity meaning, the related knowledge facts may cover various target topics. However, some of those topics do not contribute to the dialogue generation.
- 3) The integration of the knowledge and the dialogue generation in previous approaches is insufficient, including the way of integration, as well as the types of knowledge.

Introduction



Message: Apple's new product is awesome!

#1: Yes, a beautiful new Mac.

#2: I love it, as delicious as the orange.

Figure 1: An illustrative example. #1 shows the response generated with a highly relevant fact, #2 shows the response generated with irrelevant facts.

This paper's work:

- First, it design a Felicitous Fact mechanism to help the model highlight the knowledge facts that are highly relevant to the context, that is, "Felicitous Facts".
- Next, Context-Knowledge Fusion is proposed to lift the role of knowledge facts in the dialogue generation, by fusing the context and the felicitous knowledge before the decoding.
- Last, ConKADI can generate three types of words owing to the Flexible Mode Fusion module, which aims at simultaneously fusing multiple types of knowledge.

Related Work

- Seq2Seq (Sutskever et al., 2014; Vinyals and Le, 2015) has been widely used in the opendomain dialogue generation.
- ConceptNet (Speer 5813 et al., 2017) is a multilingual open-domain commonsense knowledge graph, which is designed to represent the general knowledge and to improve understanding of the meanings behind the words people use.
- the current state-of-the-art CCM (Zhou et al., 2018)

Given a training data D of triplets a query message $X = (x_1, ..., x_n)$, a response $Y = (y_1, ..., y_m)$, a set of commonsense knowledge facts $F = \{f_1, ..., f_l\}$.

The training goal: maximize the probability $\sum_{(X,Y,F)\in \mathcal{D}} \frac{1}{|\mathcal{D}|} p(Y|X,F)$; the inference goal: find $Y^* = \arg \max_Y p(Y|X,F)$. Knowledge facts F are retrieved from the knowledge graph G ; each fact is

organized as a triplet (h, r, t).

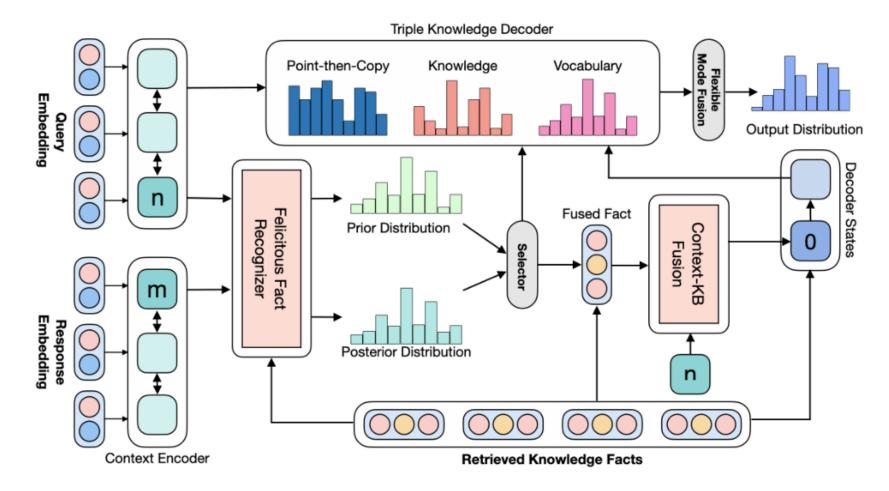


Figure 2: An overview of the proposed approach ConKADI.

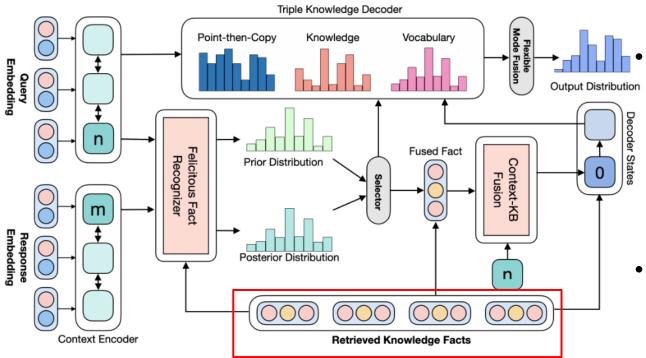


Figure 2: An overview of the proposed approach ConKADI.

If $x_i \in X$ is recognized as an entity word and can be matched to a vertex e_{src} in the knowledge graph G, then each neighbour $e_{tgt} \in Neighbour(e_{src})$ and the corresponding relation r is retrieved as a candidate fact f.

• If a word can't match any vertex, a special fact f_{NAF} will be used.

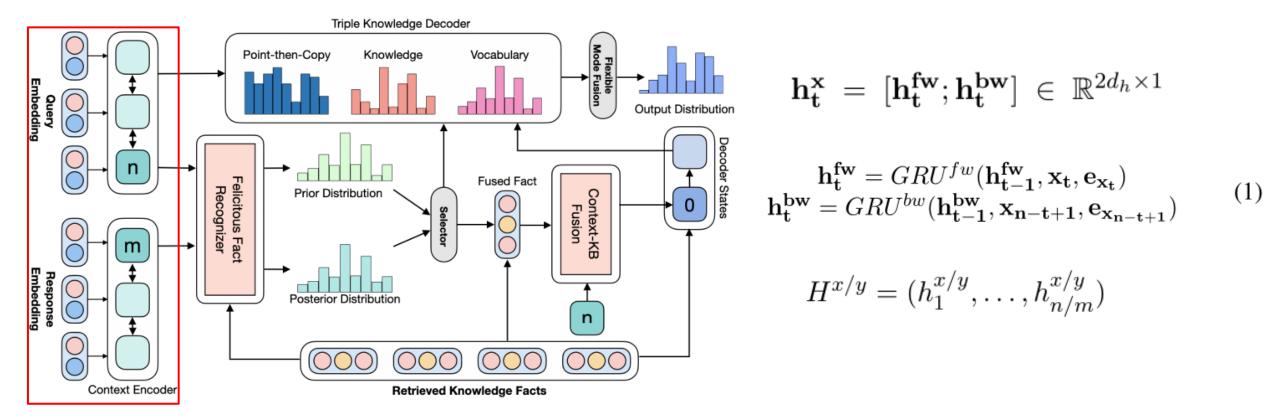


Figure 2: An overview of the proposed approach ConKADI.

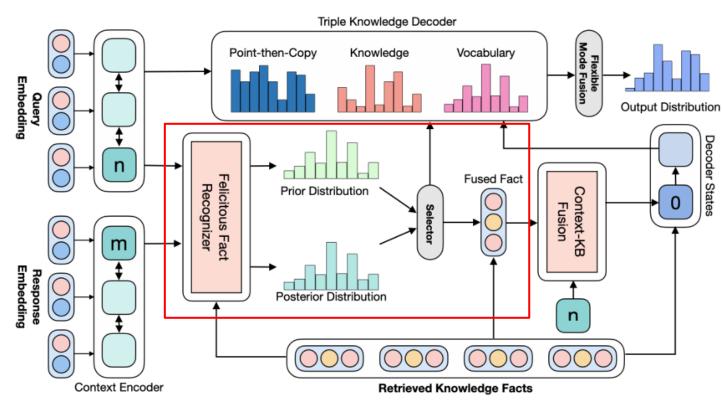


Figure 2: An overview of the proposed approach ConKADI.

$$\mathbf{z_{post}} = \eta(\varphi(\mathbf{F} \cdot \mathbf{W_{ft}}) \cdot \varphi([\mathbf{h_n^x}^\top; \mathbf{h_m^y}^\top] \cdot \mathbf{W_{post}}))^\top$$
$$\mathbf{z_{prior}} = \eta(\varphi(\mathbf{F} \cdot \mathbf{W_{ft}}) \cdot \varphi(\mathbf{h_n^x}^\top \cdot \mathbf{W_{prior}}))^\top$$
(2)

where $\mathbf{F} \in \mathbb{R}^{l \times (d_e + d_r + d_e)}$ is the embedding matrix of the retrieved facts F, \mathbf{W}_{ft} , \mathbf{W}_{post} and \mathbf{W}_{prior} are trainable parameters, η is *softmax* activation, φ is *tanh* activation.

$$\mathcal{L}_k = \mathbf{KLD}(\mathbf{z_{post}}, \mathbf{z_{prior}})$$
(3)

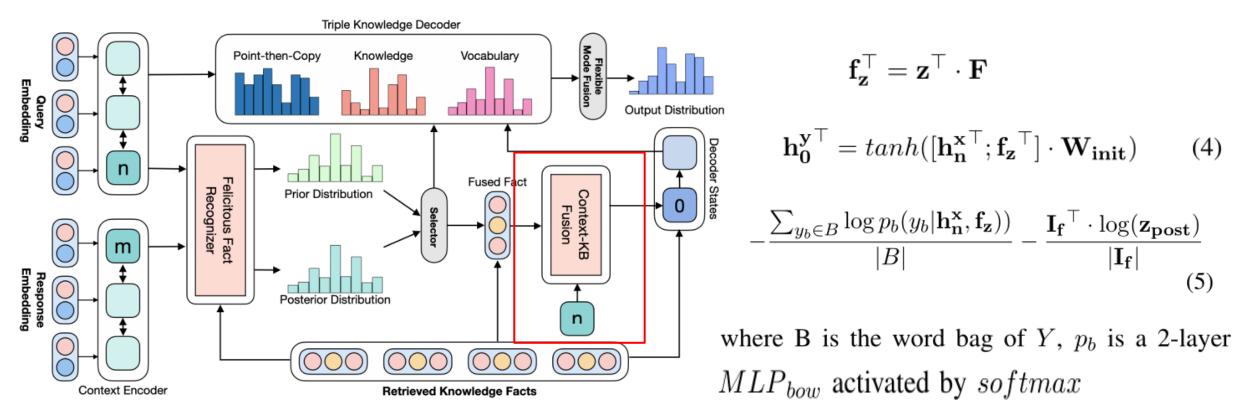


Figure 2: An overview of the proposed approach ConKADI.

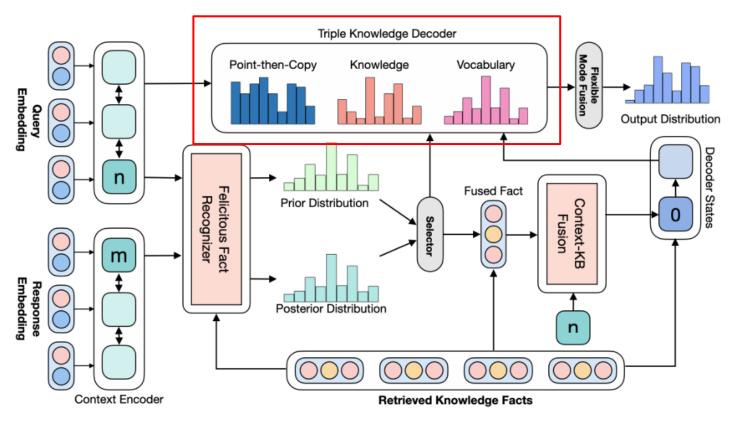


Figure 2: An overview of the proposed approach ConKADI.

$$\mathbf{h_{t}^{y}} = g(\mathbf{h_{t-1}^{y}}, \mathbf{u_{t-1}}, \mathbf{c_{t-1}})$$
(6)

where $\mathbf{u_{t-1}}^{\top} = [\mathbf{y_{t-1}}^{\top}; \mathbf{e_{y_{t-1}}}^{\top}; \mathbf{h_{y_{t-1}}}^{\times}^{\top}]$, and $\mathbf{y_{t-1}}$, $\mathbf{e_{y_{t-1}}}$, $\mathbf{h_{y_{t-1}}}^{\times}$ are the word embedding, the entity embedding and the pointed-then-copied source state of the last predicted token y_{t-1} , respectively; and $\mathbf{c_{t-1}}$ is the Attention ².

Vocabulary Words: The probability distribution $p_{w,t} \in \mathbb{R}^{|V| \times 1}$ over the V is given by:

$$p_{w,t}^{\top} = \eta(elu([\mathbf{h}_{\mathbf{t}}^{\mathbf{y}^{\top}}; \mathbf{u}_{\mathbf{t}-\mathbf{1}}^{\top}; \mathbf{c}_{\mathbf{t}}^{\top}] \cdot \mathbf{W_{v1}}) \cdot \mathbf{W_{v2}})$$
(7)

Copied Words: The Decoder can further point out a word x from X, and then copies the x. The corresponding probability distribution $p_{c,t} \in \mathbb{R}^{n \times 1}$ over the query message X is calculated as:

$$p_{c,t} = \eta(\varphi(\mathbf{H}^{\mathbf{x}} \cdot \mathbf{W}_{\mathbf{cs}}) \cdot \varphi(\mathbf{u}_{\mathbf{t}}^{\mathbf{c}^{\top}} \cdot \mathbf{W}_{\mathbf{ct}})^{\top})$$
$$\mathbf{u}_{\mathbf{t}}^{\mathbf{c}^{\top}} = [\mathbf{h}_{\mathbf{t}}^{\mathbf{y}^{\top}}; \mathbf{u}_{\mathbf{t}-\mathbf{1}}^{\top}; \mathbf{c}_{\mathbf{t}}^{\top}]$$
(9)

Knowledgeable Entity Words: An entity word can be generated by extracting the target entity of the best-matched fact f at each time step. The corresponding probability distribution $p_{k,t} \in \mathbb{R}^{l \times 1}$ over the F is calculated as:

$$\mathbf{z_{d,t}} = \eta(\varphi(\mathbf{F} \cdot \mathbf{W_{fd}}) \cdot \varphi([\mathbf{h_t^y}^\top; \mathbf{u_{t-1}}^\top] \cdot \mathbf{W_d})^\top)$$
$$\gamma_t = sigmoid([\mathbf{h_t^y}^\top; \mathbf{u_t}^\top; \mathbf{c_t}^\top] \cdot \mathbf{W_{gate}}) \in \mathbb{R}^1$$
$$p_{k,t} = \gamma_t \times \mathbf{z} + (1.0 - \gamma_t) \times \mathbf{z_d}$$
(8)

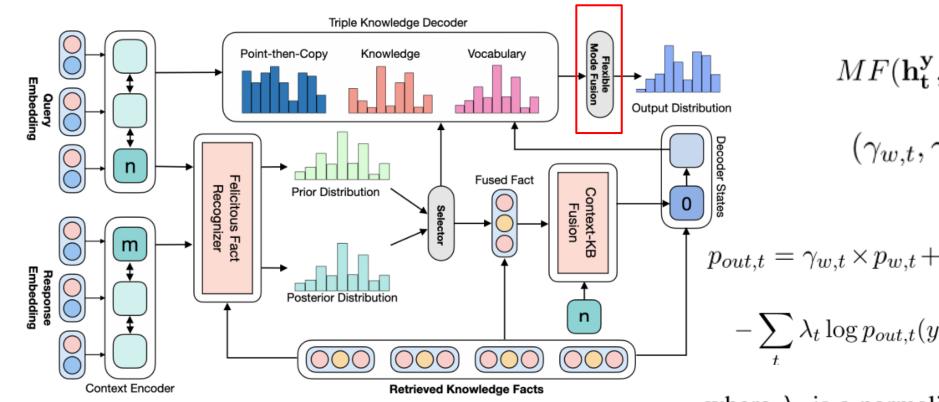


Figure 2: An overview of the proposed approach ConKADI.

 $MF(\mathbf{h_t^y}, \mathbf{u_{t-1}}, \mathbf{c_t}),$

$$(\gamma_{w,t},\gamma_{k,t},\gamma_{c,t})$$

$$p_{out,t} = \gamma_{w,t} \times p_{w,t} + \gamma_{k,t} \times p_{k,t} + \gamma_{c,t} \times p_{c,t} \quad (10)$$
$$-\sum_{t} \lambda_t \log p_{out,t}(y_t | y_{t-1:1}, X, F) + \frac{\mathcal{L}_m}{2} \quad (11)$$

where λ_t is a normalization term to penalize the out-of-vocabulary words, $\lambda_t = \frac{1}{\#(unk \in Y)}^3$ if y_t is an unk, otherwise $\lambda_t = 1$.

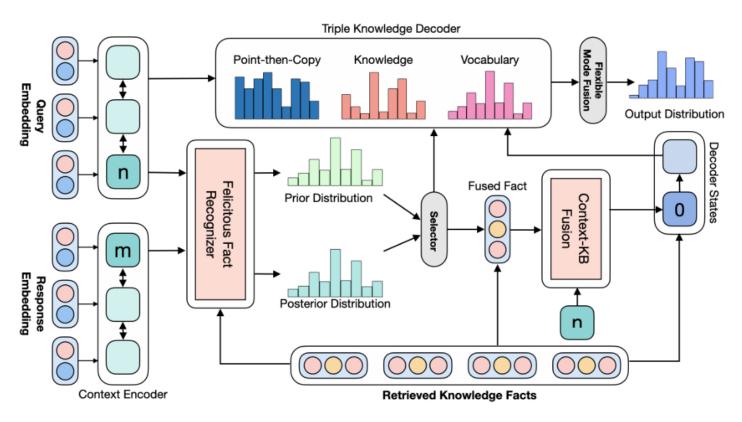


Figure 2: An overview of the proposed approach ConKADI.

Training Objective: Finally, the ConKADI can be trained by minimizing the following objective:

$$\mathcal{L} = \mathcal{L}_n + \mathcal{L}_k + \mathcal{L}_f \tag{12}$$

ATA Advanced Technique of Artificial Intelligence

Experiments

	Reddit	Weibo
#Train	1,352,961	1,019,908
#Dev/#Test	40,000	56,661
#Vocab	30,000	50,000
Batch Size	100	50
#Entity/#Relation	21,471/44	27,189/26
#Fact	149,803	696,466

Table 1: The statistics of two datasets.

	Ent	tity Sco	ore	Embe	dding	Overla	ap (%)	Divers	ity (%)	Informativeness	R-Score
Metric	$E_{\it match}$	E_{use}	E_{recall}	Emb_{avg}	Emb_{ex}	BLEU-2	BLEU-3	Distinct-1	Distinct-2	Entropy	$R_a R_g$
	Chinese Weibo										
S2S	0.33	0.58	13%	0.770	0.500	2.24	0.80	0.21	1.04	6.09	0.78 0.75
ATS2S	0.33	0.59	12%	0.767	0.513	1.93	0.69	0.27	1.23	5.99	0.77 0.75
$ATS2S_{MMI}$	0.40	0.74	15%	0.773	0.528	4.01	1.61	0.75	3.91	7.49	1.24 1.21
$ATS2S_{DD_{1.5}}$	0.35	0.62	13%	0.780	0.542	2.14	0.86	1.03	4.86	7.62	1.16 1.10
Сору	0.33	0.68	13%	0.786	0.501	2.28	0.84	0.59	2.18	6.13	0.92 0.91
GenDS	0.75	0.84	26%	0.789	0.524	2.09	0.73	0.30	1.66	5.89	0.94 0.91
CCM	0.99	1.09	28%	0.786	0.544	3.26	1.20	0.48	2.59	6.16	1.18 1.15
AVG	0.49	0.74	17%	0.779	0.522	2.56	0.96	0.52	2.50	6.48	1.00 1.00
ConKADI	1.48	2.08	38%	0.846	0.577	5.06	1.59	3.26	23.93	9.04	2.98 2.24
$ConKADI_{-cp}$	1.60	1.89	38%	0.833	0.567	5.00	1.52	2.34	18.29	8.75	2.55 2.08
					I	English R	eddit				
S2S	0.41	0.52	4%	0.868	0.837	4.81	1.89	0.38	1.77	7.59	0.82 0.78
ATS2S	0.44	0.59	5%	0.863	0.831	4.50	1.81	0.82	3.44	7.62	0.92 0.91
$ATS2S_{MMI}$	0.45	0.65	6%	0.858	0.825	4.95	2.13	0.75	3.22	7.62	0.95 0.94
$ATS2S_{DD_{0.3}}$	0.31	0.43	4%	0.830	0.784	1.70	0.75	0.97	3.50	7.47	0.77 0.72
Сору	0.13	0.67	9%	0.868	0.841	5.43	2.26	1.73	8.33	7.87	1.19 1.09
GenDS	1.13	1.26	13%	0.876	0.851	4.68	1.79	0.74	3.97	7.73	1.14 1.10
CCM	1.08	1.33	11%	0.871	0.841	5.18	2.01	1.05	5.29	7.73	1.21 1.18
AVG	0.55	0.77	7%	0.860	0.829	4.40	1.79	0.94	4.32	7.69	1.00 1.00
ConKADI	1.24	1.98	14%	0.867	0.852	3.53	1.27	2.77	18.78	8.50	1.76 1.46
$ConKADI_{-cp}$	1.41	1.73	13%	0.865	0.855	3.09	1.07	2.29	16.70	8.68	1.63 1.37

Table 2: Objective Experimental Results. The ablation $ConKADI_{-cp}$ removes the ability to copy source words.

Experiments

ConKADI	App	propriate	eness	Informativeness		
vs.	Win	Tie	Lose	Win	Tie	Lose
ATS2S	71.3%	11.0%	17.7 %	87.3%	6.9%	5.8%
ATS2S _{MMI}	59.3%	9.2%	31.5%	82.5%	7.3%	10.2%
Сору	71.7%	8.8%	19.5%	89.7%	3.8%	6.5%
GenDS	87.2%	7.3%	5.5%	93.8%	2.3%	3.5%
CCM	83.8%	6.9%	9.3%	93.0%	3.5%	3.5%

Table 3: Human annotation results on the Chinese Weibo. ConKADI significantly (sign test, p-value < 0.005, ties are removed) outperforms other baselines in terms of both appropriateness and informativeness.

Experiments

#	Settings	E_{use}	Distinct-2	Entropy	R_g
#1	Copy+GlFact+CKF+ \mathcal{L}_f	2.08	23.93	9.04	2.24
#2	Base+GlFact+CKF+ \mathcal{L}_f	1.89	18.29	8.75	2.02
#3	Copy+GlFact+CKF	1.79	18.18	8.73	2.08
#4	Base+GlFact+CKF	1.92	17.38	8.87	2.01
#5	Base+CKF	1.87	15.72	8.66	1.96
#6	Base+GlFact	1.05	2.90	6.31	1.10
#7	Base	1.06	2.50	6.46	1.10

Table 5: Ablation study on the Chinese Weibo.

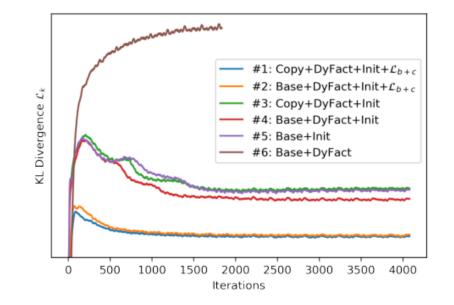


Figure 3: The Kullback–Leibler Divergence between the between the z_{prior} and z_{post} on Chinese Weibo against the training iteration number.

Query	#1:My cat likes bananas and bread.	#2:Yeah, but what website?	#3:我会唱霉霉的歌。 I can sing the song of Taylor Swift	
ATS2S	I'm a banana and I don't know what you're talking about.	I'm not sure. I'm just curious.	我也是,我唱的是 unk。 Me too. I'm singing unk。	
ATS2S _{MMI}	Do you have a cat?	It's a site site.	你唱的是哪种歌? What kind of song are you singing?	
Сору	I'm a cat.	I'm not sure what site	我也是,我也是,我也是,我也喜欢。	
Сору	T III a cat.	you're talking about.	Me too, me too, me too, I like it •	
GenDS	I'm a banana.	I'm not sure , but I'm not sure if it's a link to the original post. I'm not sure what the site is.	你可以听我唱的唱。 You can listen to my singing singing.	
ССМ	I'm a banana and I love my cat.	I'm not sure, I just got a link to the site.	我也是,我也喜欢,听着歌着 歌听着歌听着歌 Me too. I like it, too. Listening to songs. Listening to songs. Listening to songs	
ConKADI	And your cat is the best.	Looks like Youtube, the site is blocked.	我听了,他的音乐好听。 I heard it. His music is good.	

Table 4: Case Study: #1 #2 are sampled from the English Reddit, #3 is sampled from the Chinese Weibo.

Thanks